Скачать презентации открытых уроков электротехника. Презентация на тему "общая электротехника и электроника"

Главная / Работа на дому

Слайд 2

Содержание курса ТОЭ ФИБС весенний семестр 2013-14

7. Передаточная функция цепи и основные характеристики цепи 7.1. Нормирование параметров цепи 7.2. ПФ цепи и ее свойства 7.3. Виды частотных характеристик 7.4. Связь полосы пропускания RLC-контура с его добротностью 7.5. Понятие о фильтрах 8. Анализ УПР в цепи 8.1. Периодические сигналы и их спектры 2

Слайд 3

8.1.1. Формы записи РФ 8.1.2. Дискретные спектры периодических сигналов 8.1.3. Использование преобразования Лапласа для анализа УПР в цепи 8.2. Мощность и действующее значение РФ 8.2.1. Мощность 8.2.2. Действующее значение 8.3. Методы анализа УПР 8.3.1. Анализ УПР в цепи с использованием РФ 8.3.2. РФ в замкнутой форме 9. Анализ цепей спектральным методом 3

Слайд 4

9.1. Апериодические сигналы и их спектры 9.1.1. Переход от периодического сигнала к апериодическому 9.1.2. Спектральные характеристики апериодических сигналов 9.1.3. Примеры спектров основных сигналов 9.2. Критерии ширины спектра сигнала 9.2.1. Энергия сигнала и критерии ширины спектра сигнала 9.2.2. Связь ширины спектра с длительностью сигнала 9.2.3. Связь ширины спектра с крутизной сигнала 9.3. Приближённый расчёт сигнала по спектру 9.3.1. Расчет сигнала по его амплитудному и фазовому спектру 9.3.2. Связь сигнала с его мнимым и вещественным спектром 4

Слайд 5

9.4. Спектральный метод расчёта цепей 9.4.1. Общая характеристика спектрального метода расчёта цепей 9.4.2. Свойства идеальных цепей 9.4.3. Характеристики реальных цепей 9.5. Спектры амплитудно-модулированных сигналов 10. Анализ четырёхполюсников и активных цепей 10.1. Общая характеристика пассивных четырёхполюсников 10.1.1. Уравнения ЧП 10.1.2. Расчет ПФ и соединения ЧП 10.1.3. Симметричный четырёхполюсник в согласованном режиме 5

Слайд 6

10.2. Расчет цепей с зависимыми источниками 10.2.1. Общая характеристика активных элементов и цепей 10.2.2. Схемы замещения необратимых ЧП 10.2.3. Особенности методов расчета цепей с ЗИ 10.3. Расчет цепей с ОУ 10.3.1. ОУ и его свойства 10.3.2. Использование операционных усилителей для реализации основных математических операций 10.3.3. Особенности расчета цепей с ОУ 11. Анализ нелинейных цепей 6

Слайд 7

11.1. Общая характеристика нелинейных цепей 11.1.1. Исходные понятия 11.1.2. Классификация НЦ 11.2. Методы расчета НЦ 11.2.1. Графический метод расчета R-цепей 11.2.2. Аналитический расчет R-цепей 11.2.3. Расчет R-цепей с диодами 11.2.4. Общая характеристика расчёта нелинейных динамических цепей 7

Слайд 8

Курсовая работа ФИБС 2013-14

В методичке (Курсовое проектирование по теории электрических цепей / Уч.пос. для самост.раб.ст. СПб, 1996. («№9222» З 21/К 93)) тема № 4, в электронной версии методички тема № 2 (номер варианта сообщается преподавателем, ведущим практические занятия) с возможными изменениями схемы и вида входного сигнала на усмотрение преподавателя. Курсовая работа оформляется в соответствии с правилами, изложенными во введении к учебному пособию. Защита курсовой работы принимается преподавателем, ведущим практические занятия до начала экзаменационной сессии. Студент, не защитивший курсовую работу до экзамена не допускается. 8

Слайд 9

ТЕОРЕТИЧЕСКИЕ ОСНОВЫ ЭЛЕКТРОТЕХНИКИлекция №9

Глава 7. Передаточная функция цепи и основные характеристики цепи 7.1. Нормирование параметров цепи Цели нормировки(масштабирования): Перейти к безразмерным параметрам: ,близким к 1, т.е. уменьшить разброс параметров цепи. Получить максимально однотипные формулы для одинаковых классов цепей. Типы нормировки: Нормирование по времени (по частоте). нормированное, безразмерное время, где какой-либо характерный интервал, например, постоянная времени для цепи 1-го порядка или время импульса входного сигнала. 9

Слайд 10

Нормированная частота, т.е. , т.е. , т.е. нормирование по времени обратно нормированию по частоте. 2) Нормирование по уровню сопротивления, базисная величина характерное сопротивление цепи, например, в цепи 1-го порядка или сопротивление нагрузки. 3) Нормирование по уровню сигнала, базисная величина максимальное значение входного сигнала. Этот тип нормировки основан на свойстве пропорциональности линейных цепей. Каждая нормировка уменьшает число параметров цепи на 1. Параметры цепи: , т.е. , аналогично дуально. 10

Слайд 11

В курсовом за базисные величины принять, . Нормировать все -элементы, нормировать уровень сигнала не надо. Следует учесть: (килоОмы) кОм = Ом; (миллиГенри) мГн = Гн; (пикоФарады) пФ = Ф. См. пример в электронном варианте курсовой. 11

Слайд 12

7.1. Передаточная функция цепи и ее свойства По теореме свертки преобразования Лапласа имеем: здесь введено обозначение. Найдем изображение переходной характеристики Определение:Передаточной функцией цепи (ПФ) называется отношение изображения реакции к изображению единственного в цепи воздействия при нулевых ННУ. 12

Слайд 13

Свойства: ПФ является изображением ИХ цепи Свойство 1 называют вторым определением ПФ ПХ находят как интеграл ИХ. По ПФ находят частотные характеристики цепи Для перехода к МКА от операторного метода достаточно провести формальные замены 4. ПФ полностью определяет ДУ цепи, знаменатель ПФ – характеристический полином. Вывод: ПФ связывает все основные характеристики цепи. Замечание: ИН подключен к пассивному ДП, найдем входной ток. 13

Слайд 14

7.3. Виды частотных характеристик Определение:Обобщенной ЧХ или просто ЧХ цепи называется отношение комплексной амплитуды реакции к комплексной амплитуде единственного в цепи воздействия в УСР. Т.к. ЧХ – комплексная функция, ее можно представить в алгебраической и показательной форме: АЧХ ФЧХ ВЧХ МЧХ 14

Слайд 15

Очевидны соотношения между ними =arg=фаза =Re 5) АФХ Замечание: АФХ содержит полную информацию о всех видах характеристик, ее строят или по АЧХ и ФЧХ или по ВЧХ и МЧХ и проставляют необходимые частоты. Выводы по ЧХ: АЧХ содержит полную информацию об отношении амплитуд синусоид на выходе и входе в УСР. 15

Слайд 16

2) ФЧХ содержит полную информацию о сдвиге фаз синусоид реакции и воздействия в УСР. Замечание: на практике АЧХ снимают с помощью двух приборов (на входе и выходе), а ФЧХ с помощью двухлучевого осциллографа. Пример: АЧХ ФЧХ 16

Слайд 17

Построим качественно графики характеристик: Замечание: графики АЧХ и ФЧХ построены качественно по 3-м точкам. График АФХ построен на комплексной плоскости по АЧХ и ФЧХ. 17

Слайд 18

Замечание: необходимо уметь контролировать ЧХ цепи по эквивалентным схемам цепи на характерных частотах. 18

Слайд 19

7.4.Связь полосы пропускания RLC-контура с его добротностью Определение:Полосой пропускания (ПП) обычно называют диапазон частот в районе максимума АЧХ, в котором. Замечание: граничные частоты полосы пропускания часто называют частотами среза 19

Слайд 20

Дадим трактовку граничным частотам: при резонансной частоте: , . На границе ПП, . Уменьшается на границе ПП в раз. падает в 2 раза. Найдем ПП, т.е. 1) () , т.е. , т.е. , т.е. «+» 20

Слайд 21

2) () , т.е. , т.е. + = Q= Выводы: чем больше добротность резонансного контура, тем меньше его полоса пропускания. Замечание:1) , т.е. от C не зависит, следовательно, при настройке в резонанс при изменении емкости полоса пропускания не изменяется. 21

Слайд 22

2) Зная график АЧХ можно найти все параметры контура. 7.5. Понятие о фильтрах Рассмотрим ЧП Определение:Четырехполюсником (ЧП) называется часть цепи, имеющая 2 пары внешних выводов (полюсов). Определение:Фильтром называется ЧП, у которого в некоторой полосе частот, называемой ПП, АЧХ обычно изменяется от 1 до 0,707 или от до а в остальной полосе частот, называемой полосой задерживания (ПЗ) АЧХ быстро затухает. Определение:Фильтр называется идеальным, если у него в ПП АЧХ=1, а в ПЗ АЧХ=0. Замечание: идеальный фильтр реализовать невозможно хотя бы потому, что его ЧХ не является дробно-рациональной функцией от обобщенной частоты как это должно быть у реальных цепей. 22

Слайд 23

Классификация фильтров: рассмотрим классические симметричные фильтры типа «к» ФНЧ – фильтр нижних частот, пропускает на низких частотах Трактовка поведения цепи на характерных частотах: , т.е. КЗ; , т.е. ХХ 23

Слайд 24

2) , т.е. ХХ; , т.е. КЗ 2. ФВЧ – фильтр верхних частот, пропускает на высоких частотах Трактовка дуальна 24

Слайд 25

3. ППФ – полосовой пропускающий фильтр, пропускает сигнал в некотором диапазоне частот 4. ПЗФ – полосовой заграждающий фильтр, не пропускает сигнал в некотором диапазоне частот 25

Слайд 26

Рассматривают и другие типы фильтров. Например, полиномиальные (фильтры Баттерворта и Чебышева различного порядка), фильтры типа m и другие. 8. Анализ УПР в цепи 8.1. Периодические сигналы и их спектры 8.1.1.Формы записи РФ Условно считаем, что периодическое воздействие приложено к цепи при Тогда к любому моменту времени свободная составляющая затухла и в цепи установившийся (вынужденный) периодический режим. 26

Слайд 27

Реальные периодические сигналы удовлетворяют условиям Дирихле: 1) в пределах периода они ограничены по уровню, 2) в пределах периода они непрерывны, имеют конечное число максимумов и минимумов, если имеют разрывы, то это разрывы 1 рода и их число конечно. Определение: Периодический сигнал удовлетворяющий условиям Дирихле при всех tможно разложить в сходящийся гармонический ряд Фурье причем частоты гармоник кратны частоте первой (основной) гармоники, т.е. , период сигнала ()при этом сумма ряда Фурье в точках непрерывности равна, а в т. разрыва 1 рода равна полусумме пределов слева и справа, т.е. РФ плохо сходится в точках разрыва. Формы записи РФ: 1. 27

Слайд 28

Нулевая гармоника, т.е. постоянная составляющая 2. Можно преобразовать РФ к другой форме Свойства РФ симметричных сигналов: 1) Четные сигналы не содержат синусоид, т.е. 28

Слайд 29

2) Нечетные сигналы не содержат косинусоид, т.е. . 3) РФ сигналов, симметричных относительно оси t при сдвиге на полпериода не содержат гармоник четных номеров 3. Комплексная форма записи РФ 8.1.2.Дискретные спектры периодических сигналов Определение: Множество комплексных амплитуд гармоник РФ называется дискретным спектром периодического сигнала, соответственно множество амплитуд, называют дискретным амплитудным спектром, а множество фаз, называют дискретным фазовым спектром. 29

Слайд 30

Амплитудный спектр четная функция; фазовый спектрнечетная функция. Замечание 1: Спектр называется дискретным, т.к. он существует только при дискретных значениях частоты, расстояние между гармониками по оси частот 2: Спектр часто называют линейчатым, т.к. его обозначают отрезками прямых линий. 3: Особенность спектра в том, что. 4: Синусоида тоже периодический сигнал. Его спектры 30

Слайд 31

Выводы: амплитудный спектр полностью характеризует амплитуды гармоник, т.е. синусоид, которыми РФ заменяет периодический сигнал, а фазовый спектр полностью характеризует начальные фазы, каждая гармоника существует в временном интервале и число гармоник тоже бесконечно. Замечание 1: Попутно доказали, что гармоника отрицательной частоты имеет такое же право на существование как и гармоника положительной частоты 2: Все формы записи РФ эквивалентны. 8.1.3.Использование преобразования Лапласа для анализа УПР в цепи 31

Слайд 32

Условным первым импульсом назовем описание периодического сигнала внутри условного первого периода, переходим к преобразованию Лапласа, расширив верхний предел и подставив его в интеграл. Вывод: коэффициенты РФ можно найти используя изображение по Лапласу условного 1-го импульса периодического сигнала. 8.2.Мощность и действующее значение РФ 8.2.1.Мощность Рассмотрим пассивный ДП в УПР, ток и напряжение которого разложены в РФ Средняя мощность за период (активная мощность ДП) 32

Слайд 33

ТЕОРЕТИЧЕСКИЕ ОСНОВЫ ЭЛЕКТРОТЕХНИКИлекция № 9

Подставим РФ тока и напряжения с учетом того, что (суммарная площадь синусоиды за период), и интеграл от произведения гармоник с разными номерами тоже равен 0. 8.2.2.Действующее значение РФ Среднеквадратичное значение, имеющее энергетическую трактовку Заменяя на в формуле мощности 33

Слайд 34

Аналогично для напряжения Замечание: У сигнала постоянной величины мгновенное, амплитудное, среднее и действующее значение одно и тоже. 8.3. Методы анализа УПР 8.3.1. Анализ УПР в цепи с использованием РФ Основная идея: РФ воздействия считаем суммой элементарных воздействий и методом наложения находим РФ реакции. Последовательность действий: 1. Периодическое воздействие раскладываем в РФ. На практике обычно ограничиваются несколькими первыми гармониками, т.к. РФ быстро сходится, используют «укороченный РФ» (отрезок РФ) 34

Слайд 35

2. Находим ПФ цепи, по ней ЧХ (АЧХ и ФЧХ) Смысл ЧХ в УСР, а для каждой гармоники ц цепи УСР. 3. Методом наложения находим РФ реакции На основании 1-3 = = 35

Слайд 36

Являясьприближенным, метод эффективен, если цепь ФНЧ. Однако, в некоторых цепях убыль амплитуд воздействия компенсируется ростом АЧХ цепи, приходится учитывать сотни гармоник и приближенный расчет по РФ становится трудоемким. Замечание 1: Спектральный состав реакции полностью соответствует спектральному составу воздействия и новые гармоники на выходе появиться не могут. 2: Цепь пропускает разные гармоники с разными коэффициентами передачи, т.е. форма периодического сигнала на выходе не соответствует форме периодического сигнала на входе. 8.3.2. РФ в замкнутой форме (точный расчет УПР) Основная идея метода – свободная составляющая определяется корнями ХП (т.е. полюсами ПФ), а вынужденная имеет математическую форму воздействия (не выполняется при резонансе). 36

Слайд 37

Последовательность действий: Условно считаем, что периодическое воздействие приложено при t=0 Находим изображение воздействия с учетом формулы для суммы затухающей геометрической прогрессии 2. Находим ПФ цепи находим полюсы ПФ, полюсы предполагаем некратными. 3. Находим изображение реакции (выходного сигнала) и выделяем в нем свободную и вынужденную составляющие. 37

Слайд 38

Свободная составляющая определяется полюсами ПФ, а вынужденная имеет математическую форму воздействия, т.е. геометрическая прогрессия, т.е. искомое описание первого импульса установившейся реакции в интервале первого периода т.е. определяем как обычно 4. Находим 1-й импульс на выходе ]() Определяем его оригинал, т.е. точное описание периодической реакции в интервале 1 периода и периодически продолжаем ее. Замечание 1: Найденное точное решение называют РФ в замкнутой форме, т.к. оно учитывает бесконечное число гармоник. 38

Слайд 39

Замечание 2: Если считать, что входной сигнал начинается от 0, то этот метод можно применить для расчета ПП, фактически найдена свободная составляющая в 3: Расчет можно проводить и для не дробно-рациональной функции. Глава 9. Анализ цепей спектральным методом 9.1. Апериодические сигналы и их спектры 9.1.1. Переход от периодического сигнала к апериодическому Апериодический сигнал (одиночный импульс) можно рассматривать как периодический при Преобразуем РФ в комплексной форме для периодического сигнала 39

Посмотреть все слайды


Электрическая (электромагнитная) энергия является одним из видов энергий в распоряжении человека. Энергия – это мера различных форм движения материи и перехода движения материи из одного вида в другой. К преимуществам электрической энергии можно отнести: - относительную простоту производства, - возможность практически мгновенной передачи на огромные расстояния, - простые методы для преобразования в другие виды энергии (механическая, химическая), - простота управления электроустановками, - высокий КПД электротехнических устройств.


Чтобы добыть 1 тонну угля или руды необходимо затратить около 20 кВт*ч электроэнергии, а для обогащения руды до 1 тонны железистого концентрата необходимо около 90 кВт*ч, для выплавки 1 тонны электростали около 2000 кВт*ч. Такое крупное предприятие КМА как Лебединский ГОК в месяц затрачивает на свою работу около кВт*ч электроэнергии г.1960 г.1970 г.1980 г.1990 г.2000 г.2005 г. Выработан о всего (млрд. кВт·ч) 30, На ТЭС, % ,2 На ГЭС, %39,91214,2 На АЭС, %00.115,6 Выработка электроэнергии на электростанциях России (РСФСР).


Предысторией электротехники следует считать период до 17 века. В эти времена были обнаружены некоторые электрические (притягивание к янтарю пылинок) и магнитные явления (компас в мореплавании), но природа этих явлений оставалась неизвестной. Первым этапом истории электротехники следует считать 17 век, когда появились первые исследования в области электрических и магнитных явлений. На основе этих исследований в 1799 г. был создан первый источник электрического тока Алессандром Вольтом (Алесса́ндро Джузе́ппе Анто́нио Анаста́сио Во́льта) (итал.) - «вольтов столб» Этот источник называют теперь гальваническим элементом в честь Луи́джи Гальва́ни (итал.), который один год не дожил до этого открытия, но будучи врачом, много сделал для свершения этого открытия


Второй этап развития электротехники г. – Открыто магнитное действие тока (Ханс Кристиан Э́рстед) (датч.) – датский физик г. – Открыт закон взаимодействия электрических токов (Андре- Мари Ампер) (фран.) – французский физик г. – Открыт основной закон электрической цепи (Георг Симон Ом) (нем.) – немецкий физик г. – Открыт закон электромагнитной индукции (Майкл Фарадей) (англ.) – английский физик г. – Открыто явление самоиндукции (Джозеф Генри) (амер.) – американский физик г. – Изготовление электрогенератора постоянного тока (Ипполит Пикси) (фран.) – французский инструментальщик (по заказу Андре-Мари Ампера (фран.) – французский физик.


Второй этап развития электротехники г. – Сформулировано правило, определяющее направление индукционного тока (Эмилий Христианович (Генрих Фридрих Эмиль) Ленц) (нем.) – русский физик г. – Изобретение первого электродвигателя, пригодного для практических целей (Бори́с Семёнович (Мориц Герман фон) Я́коби) (нем.) – русский физик – 1842 г. – Определение теплового действия тока (Джеймс Прескотт Джоуль) (англ.) – английский физик, (Генрих Фридрих Эмиль) Ленц) (нем.) – русский физик г. – Сформулированы правила для расчета цепей (Густав Роберт Кирхгоф) (нем.) – немецкий физик.


Третий этап развития электротехники г. – Создана теория электромагнитного поля (Джеймс Клерк (Кларк) Максвелл) (англ.) – английский физик г. – Создание первого электрогенератора, получившего практическое применение (Зеноб (Зиновий) Теофил Грамм) (бельгиец) –французский физик г. – Изобретение электрической лампы накаливания (получение патента) (Алекса́ндр Никола́евич Лоды́гин) (рус.) – русский электротехник г. – Изобретение телефона (получение патента) (Александр Грэм Белл) (англ.) – американский физик.


Третий этап развития электротехники г. – Создание трансформатора для питания током источников освещения (получение патента) (Па́вел Никола́евич Я́блочков) (рус.) – русский электротехник г. – Сооружение первой линии электропередачи (Марсель Депре) (фран.) – французский физик г. – Изобретение радиоприемника (Алекса́ндр Степа́нович Попо́в) (рус.) – русский электротехник г. – Изобретение радиотелеграфа (Гульельмо Марко́ни) (итал.) итальянский радиотехник г. – Открыт электрон (Сэр Джозеф Джон Томсон) (англ.) – английский физик.


Четвертый этап развития электротехники г. – Изобретение лампового диода (Сэр Джо́н Амбро́з Фле́минг) (англ.) – английский физик г. – Изобретение лампового триода (Ли де Фо́рест) (англ.) – американский физик г. – Изобретение полевого транзистора (получение патента) (Юлий Эдгар Лилиенфельд) австро-венгерский физик г. – Изобретение биполярного транзистора (Уильям Шокли, Джон Бардин и Уолтер Браттейн в лабораториях Bell Labs) американские физики г. – Изобретение интегральной схемы. (Джек Килби (Texas Instruments) на основе германия, Роберт Нойс (основатель Fairchild Semiconductor) на основе кремния) американские изобретатели.


Электротехника – наука о практическом применении электрических и магнитных явлений. Электрон от греч. electron – смола, янтарь. Все основные определения связанные с электротехникой описаны в ГОСТ Р Постоянные величины обозначают прописными буквами: I, U, E, изменяющиеся в времени значения величин записывают строчными буквами: i, u, e. Элементарный электрический заряд – свойство электрона или протона, характеризующее их взаимосвязь с собственным электрическим полем и взаимодействие с внешним электрическим полем, определяемое для электрона и протона равными числовыми значениями с противоположными знаками. Условно отрицательный знак приписывают заряду электрона, а положительный заряду протона. (-1,6* Кл)


Электромагнитное поле – вид материи, определяемый во всех точках двумя векторными величинами, которые характеризуют две его стороны, называемые «электрическое поле» и «магнитное поле», оказывающий силовое воздействие на электрически заряженные частицы, зависящее от их скорости и электрического заряда. Электрическое поле – одна из двух сторон электромагнитного поля, характеризующаяся воздействием на электрически заряженную частицу с силой, пропорциональной заряду этой частицы и не зависящей от ее скорости. Магнитное поле - одна из двух сторон электромагнитного поля, характеризующаяся воздействием на движущуюся электрически заряженную частицу с силой, пропорциональной заряду этой частицы и ее скорости.


Носитель электрических зарядов – частица, содержащая неодинаковое число элементарных электрических зарядов разного знака. Электрический ток – явление направленного движения носителей электрических зарядов и (или) явление изменения электрического поля во времени, сопровождаемые магнитным полем. В металлах носителями заряда являются электроны, в электролите и плазме – ионы. Значение электрического тока сквозь некоторую поверхность S в данный момент времени равно пределу отношения электрического заряда q перенесенного заряженными частицами сквозь поверхность в течение промежутка времени t, к длительности этого промежутка, когда последний стремится к нулю, т.е. где i - электрический ток, (А); q – заряд, (Кл); t – время (с).


Постоянный ток – ток при котором в течении каждого одинакового промежутка времени переносится одинаковый заряд, т.е: где I - электрический ток, (А); q – заряд, (Кл); t – время (с). Напряженность электрического тока – векторная величина, характеризующая электрическое поле и определяющая силу, действующую на электрически заряженную частицу со стороны электрического поля. Равна отношению силы, действующей на заряженную частицу, к ее заряду и имеет направление силы, действующей на частицу с положительным зарядом. Измеряется в Н/Кл или В/м. Сторонняя сила – сила, действующая на электрически заряженную частицу, обусловленная неэлектромагнитными при макроскопическом рассмотрении процессами. Примерами таких процессов служат химические реакции, тепловые процессы, воздействие механических сил, контактные явления.


Электродвижущая сила; ЭДС – скалярная величина, характеризующая способность стороннего поля и индуктированного электрического поля вызывать электрический ток. Численно ЭДС равна работе A (Дж), совершаемой этими полями при переносе единицы заряда q (Кл) равной 1 Кл. где E - (ЭДС) электродвижущая сила, В; A – работа сторонних сил при перемещении заряда (Дж); q – заряд, (Кл). Электрическое напряжение – скалярная величина, равная линейному интегралу напряженности электрического поля вдоль рассматриваемого пути. Определяется для электрического напряжения U 12 вдоль рассматриваемого пути от точки 1 к точке 2 Где ε - напряженность электрического поля, dl – бесконечно малый элемент пути, r1 и r2 – радиусы-векторы точек 1 и 2, т.е. напряжение – это работа сил поля с напряженностью ε, затрачиваемая на перенос единицы заряда (1 Кл) вдоль пути l. Разность потенциалов – электрическое напряжение в безвихревом электрическом поле, характеризующее независимость выбора пути интегрирования.


Электрическая цепь – совокупность устройств и объектов, образующих путь для электрического тока, электромагнитные процессы в которых могут быть описаны с помощью понятий об электродвижущей силе, электрическом токе и электрическом напряжении. Простейшая электрическая цепь (монтажная схема).


Элемент электрической цепи – отдельное устройство, входящее в состав электрической цепи, выполняющее в ней определенную функцию. Основными элементами простейшей электрической цепи являются источники и приемники электрической энергии Простейшая электрическая цепь (монтажная схема).


В источниках электрической энергии различные виды энергии, например химическая, механическая преобразуются в электрическую (электромагнитную). В приемниках электрической энергии происходит обратное преобразование – электромагнитная энергия преобразуется в иные виды энергии, например химическую (гальванические ванны выплавки алюминию или нанесения защитного покрытия), механическую (электродвигатели), тепловую (нагревательные элементы), световую (лампы дневного света). Источники электрической энергии Приемники электрической энергии Проводники


Схема электрической цепи – графическое изображение электрической цепи, содержащее условные обозначения ее элементов и показывающее соединение этих элементов. Для сбора схем используют принципиальные схемы, где каждому элементу соответствует условное графическое и буквенное обозначение, а для расчетов цепей используют схемы замещения, в которых реальные элементы замещаются расчетными моделями, а все вспомогательные элементы исключаются. Принципиальные схемы составляются согласно ГОСТ, например: ГОСТ Единая система конструкторской документации. Обозначения условные графические в схемах. Катушки индуктивности, дроссели, трансформаторы, автотрансформаторы и магнитные усилители ГОСТ Единая система конструкторской документации. Обозначения условные графические в схемах. Резисторы, конденсаторы




Схема замещения – схема электрической цепи, отображающая свойства цепи при определенных условиях. Идеальный элемент (электрической цепи) – абстрактное представление элемента электрической цепи, характеризуемое одним параметром. Вывод электрической цепи – точка электрической цепи, предназначенная для выполнения соединения с другой электрической цепью. Двухполюсник – часть электрической цепи с двумя выделенными выводами. Цепи бывают простые и сложные. В простых цепях все элементы соединены последовательно. В сложных цепях имеются с разветвлениями для тока.








По виду тока цепи разделяются на цепи постоянного, изменяющегося и переменного тока. Постоянный ток – электрический ток, не изменяющийся во времени t (рис. 1.3.а). Все остальные токи – изменяющиеся во времени (рис. 1.3.б.) или переменные (рис. 1.3.в.). Цепью с переменным током называют цепь с током, изменяющимся по синусоидальному закону. I t I t t I а) б) в) Рис Виды токов в цепях.


К линейным цепям относятся цепи, в которых электрическое сопротивление каждого участка не зависит от значения и направления тока и напряжения. Т.е. вольт-амперная характеристика (ВАХ) участков цепи представлена в виде прямой (линейная зависимость) (рис а). а) б) Рис Вольт – амперные характеристики (ВАХ) цепей. U I U I где U - напряжение, (В); I – сила тока, (А). Остальные цепи называются нелинейными (рис. 1.3.б).


Электрическое сопротивление постоянному току – скалярная величина, равная отношению постоянного электрического напряжения между выводами пассивного двухполюсника к постоянному электрическому току в нем. где R – электрическое сопротивление постоянному току, (Ом); ρ - удельное сопротивление, (Ом*м); - длина проводника, (м); S – площадь поперечного сечения, (м 2), где R – электрическое сопротивление постоянному току, (Ом); U - напряжение, (В); I – сила тока, (А). Резистор – элемент электрической цепи, предназначенный для использования его электрического сопротивления. Для проводов сопротивление находится по формуле:


Сопротивление проводов, резисторов и других проводников электрического тока зависит от температуры T окружающей среды Электрическая проводимость (для постоянного тока) - скалярная величина, равная отношению постоянного электрического тока через пассивный двухполюсник к постоянному электрическому напряжению между выводами этого двухполюсника. Т.е. величина обратная сопротивлению где R – электрическое сопротивление постоянному току, (Ом); R 20 – электрическое сопротивление постоянному току при температуре 20ºС, (Ом); α - температурный коэффициент сопротивления, зависящий от материала; T – температура окружающей среды, (ºС). где G - электрическая проводимость, (См) (Сименс) или Ом -1 ; U - напряжение, (В); I – сила тока, (А); R – электрическое сопротивление, (Ом).


Потокосцепление – сумма магнитных потоков, сцепленных с элементами контура электрической цепи. Потокосцепление самоиндукции – потокосцепление элемента электрической цепи, обусловленное электрическим током в этом элементе. Собственная индуктивность – скалярная величина, равная отношению потокосцепления самоиндукции элемента электрической цепи к электрическому току в нем. где Ψ – потокосцепление, (Вб); m - число витков; Ф – магнитный поток (Вб). где L - индуктивность, (Гн); Ψ – потокосцепление, (Вб); I – сила тока, (А).


Индуктивная катушка – элемент электрической цепи, предназначенный для использования его собственной индуктивности и(или) его магнитного поля. Напряжение на выводах катушки равно произведению индуктивности и скорости изменения тока через нее. где u L – напряжение, (В); L - индуктивность, (Гн); i – сила тока, (А). Ток через катушку прямо пропорционален интегралу по напряжению и обратно пропорционален индуктивности катушки. где i L – сила тока, (А); L - индуктивность, (Гн); u– напряжение, (В).


Индуктивность однослойной катушки со сплошной намоткой можно определить по эмпирической формуле: Индуктивность многослойной катушки: где L - индуктивность, (мкГн); D – диаметр катушки, (см); ω – число витков катушки; - длина намотки, (см); t – толщина намотки, (см).


Электрическая емкость проводника – скалярная величина, характеризующая способность проводника накапливать электрический заряд, равная отношению электрического заряда проводника к его электрическому потенциалу в предположении, что все другие проводники бесконечно удалены и что электрический потенциал бесконечно удаленной точки принят равным нулю. Электрическая емкость между двумя проводниками – скалярная величина, равная абсолютному значению отношения электрического заряда одного проводника к разности электрических потенциалов двух проводников при условии, что эти проводники имеют одинаковые по значению, но противоположные по знаку заряды и что все другие проводники бесконечно удалены. где С – емкость, (Ф); q - заряд, (Кл); Uc –напряжение между выводами конденсатора, (В).


Электрическая емкость конденсатора – электрическая емкость между электродами электрического конденсатора. Для плоского конденсатора с двумя пластинами (обкладками) емкость равна: где С – емкость, (пФ); S – площадь пластин конденсатора, (см2); d – расстояние между пластинами конденсатора (ширина диэлектрика), (см); ε – диэлектрическая проницаемость диэлектрика (вакуум и воздух = 1; янтарь = 2,8; сосна сухая = 3,5; мрамор = 8-10; сегнетокерамика =). Электрический конденсатор – элемент электрической цепи, предназначенный для использования его электрической емкости.


Где u С – напряжение, (В); С - емкость, (Ф); i – сила тока, (А). Эквивалентный ток через конденсатор прямо пропорционален емкости конденсатора и скорости изменения напряжения на его обкладках. где С - емкость, (Ф); i С – сила тока, (А). u – напряжение, (В). Напряжение на выводах конденсатора изменятся прямо пропорционально интегралу по току и обратно пропорционально емкости конденсатора.


Участок электрической цепи – часть электрической цепи, содержащая выделенную совокупность ее элементов. Ветвь электрической цепи – участок электрической цепи, вдоль которого протекает один и тот же электрический ток (участок a-b, b-d, b-d). Узел электрической сети – место соединения ветвей электрической цепи (a,b,с,с,d,d). Контур электрической цепи – последовательность ветвей электрической цепи, образующая замкнутый путь, в которой один из узлов одновременно является началом и концом пути, а остальные встречаются только один раз (участок a-b-d-с-a). E1E1 R2 R3 E2E2 R4 R5 E4 R7 ab c d R6 c d R1


Каждому устройству электрической цепи может соответствовать несколько схем замещения. Вид и параметры схемы зависит от особенностей от многих факторов, например от конструкции устройства, режима работы, частоты воздействующего сигнала, требуемой точности расчетов, принятых допущений



«Электронные средства наблюдения» - Преимущества ЭО и ТВ средств наблюдения. Физический принцип действия оптико-электронного прибора. Задачи, решаемые с помощью ЭО и ТВ средств. Учебные вопросы. Общие сведения об оптико-электронных средствах наблюдения. Лекция 13/1. К таким приборам относятся: Минимально допустимая освещенность на фотокатоде (Е) от 5.10-3 до 5.10-4 лк.

«Лампы электрические» - Регулирование оставалось еще ручным. В.В.Петров. Лампа Яблочкова. В течение первой половины XIX в. господствующее положение занимало газовое освещение. Осенью 1875 г. Яблочков проводил опыт электролиза поваренной соли. В 1879 г. Эдисон заинтересовался проблемой электрического освещения. Введение. Тогда же, в 1802 г., Дэви в Англии демонстрировал накал проводника током.

«Объяснение электрических явлений» - План урока. Если заряжен, какой знак имеет шарик? Диэлектрики. Электрон. Почему электроны переходят с шерсти на эбонит, а не наоборот? Тела состоят. Посмотрите на рисунок и ответьте, заряжен ли шарик? Эбонит. Атомов. Основная задача урока. Т е л о. Мини – конференцию по защите проектов. Протон. Ответ обоснуйте.

«Электронагревательные приборы» - Электрический чайник Петера Беренса. Эмиль Ратенау. Электронагревательные приборы. Эмилий Христианович Ленц. ТЭНы всякие нужны… Русская печь. Электронагревательные приборы на кухне. Сопротивление проводника. 1883 год - основание общества allgemeine electricitats-gesellshaft (AEG). Джеймс Прескотт Джоуль.

«Энергосберегающие лампы» - Скорее всего, дело просто в отсутствии элементарной хозяйственности. И за день набегают уже не килограммы, а десятки тонн выброшенного топлива. Энергосбережение на примере моей квартиры. Европейцы стараются снизить энергозатраты всеми возможными способами. Печально, но факт: наша страна - одна из самых энергорасточительных в мире.

«Лампа накаливания» - Две проволоки одинаковой длины и сечения, железная и медная, соединены параллельно. 2. Как называются детали 3 и 4 электрической лампы накаливания? Что означают цифры на цоколе или баллонах ламп? Вставить пропущенные в формулах буквы. 4. 1878 год Лампа с электрической дугой – «Свеча П.Н.Яблочкова». Тест с выбором ответа.

Всего в теме 12 презентаций

Слайд 2

Цепи постоянного тока

Слайд 3

Электротехника – это наука об электрических явлениях, о производстве, передаче, распределение, преобразовании и использовании электрической энергии. Быстрое развитие электротехники объясняется тем, что электрическая энергия по сравнению с другими видами энергии обладает рядом существенных преимуществ. 1. Электрическая энергия легко преобразуется в другие виды энергии – тепловую, механическую, химическую (и наоборот). 2. Электрическую энергию легко передавать по проводам на большие расстояния. 3. Электрическую энергию легко подвести к потребителю и расходовать в любых количествах. 4. КПД электрических установок значительно выше, чем КПД установок работающих за счет других источников энергии.

Слайд 4

Цель изучения дисциплины - дать основополагающие знания для освоения специальных дисциплин и практической работы при эксплуатации электротехнических устройств в автомобильной техники. Задачами дисциплины являются: изучение основных законов электротехники, формирование у обучаемых понятий теории электрических цепей; изучение устройства электрических машин и приборов электроники; освоение методов теоретического анализа и экспериментального исследования электромагнитных процессов; формирование представлений об устройстве и принципах действия электрооборудования используемого в транспортно - технологических машинах.

Слайд 5

В настоящее время основные понятия электротехники определяются: действующими терминологическими стандартами и рекомендациями Международной Электротехнической Комиссии (МЭК), Международного Электротехнического Словаря (МЭС, 2-ое издание, 1954 г., франц. и англ.); межгосударственным стандартом ГОСТ 19880 - 74 "Электротехника. Основные понятия. Термины и определения" ; Российским стандартом ГОСТ Р 52002 - 2003 «Электротехника. Термины и определения основных понятий».

Слайд 6

Таблица 1 - Основные понятия и их обозначения

Слайд 7

Таблица 2 - Множители и приставки для образования десятичных кратных и дольных единиц

Слайд 8

Таблица 3 - Некоторые единицы механических величин в системе СИ

Слайд 9

Таблица 4 - Некоторые единицы электрических величин в системе СИ

Слайд 10

Таблица 5 - Некоторые единицы магнитных величин в системе СИ

Слайд 11

Любая электрическая цепь содержит источники электрической энергии, приёмники (электрические нагрузки), коммутационную аппаратуру, соединительные линии и измерительные приборы.

Слайд 12

Источниками электрической энергии являются электрические генераторы, в которых механическая энергия преобразуется в электрическую или первичные элементы и аккумуляторы, в которых происходит преобразование химической, тепловой, световой и других видов энергии в электрическую. К потребителям электрической энергии относятся электродвигатели, нагревательные и световые приборы и т. д. Электрическая схема - графическое изображение электрической цепи. Схема замещения электрической цепи состоит из совокупности различных идеализированных элементов, выбранных так, чтобы можно было с заданным или необходимым приближением описать процессы в цепи.

Слайд 13

Слайд 14

Условно - графические обозначения в соответствии с ЕСКД

Слайд 15

Конфигурация схемы замещения цепи определяется следующими геометрическими (топологическими) понятиями: ветвь, узел, контур. Ветвь схемы состоит из одного или нескольких последовательно соединенных элементов, каждый из которых имеет два вывода (начало и конец), причём к концу каждого предыдущего элемента присоединяется начало следующего. В узле схемы соединяются три или большее число ветвей. Контур - замкнутый путь, проходящий по нескольким ветвям так, что ни одна ветвь и ни один узел не встречается больше одного раза. Все потребители электрической энергии принято характеризовать некоторыми параметрами.

Содержание Понятие об электрическом токе Физические величины Распределение электроэнергии Закон Ома Степень IP Степень IK

Понятие об электрическом токе Электрический ток — направленное движение электрически заряженных частиц. Электрический ток это?

Понятие об электрическом токе Как создать направленное движение заряженных частиц? Для поддержания электрического тока в проводнике необходим внешний источник энергии, который все время поддерживал бы разность потенциалов на концах этого проводника. Такими источниками энергии служат так называемые источники электрического тока, обладающие определенной электродвижущей силой (ЭДС) , которая создает и длительное время поддерживает разность потенциалов на концах проводника.

Понятие об электрическом токе Во всех ли веществах возможно движение заряженных частиц? Проводник Полупроводник. Диэлектрик это тело, внутри которого содержится достаточное количество свободных электрических зарядов, способных перемещаться под действием электрического поля это тело не содержащее внутри свободные электрические заряды. В изоляторах электрический ток невозможен металлы, растворы солей и кислот, влажная почва, тела людей и животных стекло, пластик, резина, картон, воздух это материал, проводящий ток, только при определенных условиях кремний и сплавы на его основе

Понятие об электрическом токе Постоянный ток (DC) постоянным током называется электрический ток, который не изменяется во времени по направлению. Источниками постоянного тока являются гальванические элементы, аккумуляторы и генераторы постоянного тока. Переменный ток (AC) переменным называется электрический ток, величина и направление которого изменяются во времени. Область применения переменного тока намного шире, чем постоянного. Это объясняется тем, что напряжение переменного тока можно легко понижать или повышать с помощью трансформатора, практически в любых пределах. Переменный ток легче транспортировать на большие расстояния.

Физические величины Напряжение Сила тока Сопротивление Частота Активная мощность Реактивная мощность Полная мощность

Напряжение (U) между двумя точками – разность потенциалов в различных точках электрической цепи, обусловливающая наличие в ней электрического тока. Единица измерения — Вольт (В) 1 В = 1 Дж/Кл

Сила тока (I) — величина, равная отношению заряда q , прошедшего через поперечное сечение проводника, к промежутку времени t , в течение которого шел ток. Единица измерения — Ампер (А)

Сопротивление (R) – физическая величина, характеризующая свойства проводника препятствовать прохождению электрического тока и равная отношению напряжения на концах проводника к силе тока, протекающего по нему. Единица измерения — Ом (Ом)

Частота (f) – определяет количество колебаний тока в секунду. Единица измерения — Герц (Гц) 50 Гц

Мощность Электрическая мощность - физическая величина, характеризующая скорость передачи или преобразования электрической энергии. Вт ВАР ВА Q = U ∙ I ∙ sin φ P = U ∙ I ∙ cos φ S=U ∙ I

Распределение электроэнергии Линейное напряжение (U л) — это напряжение между двумя фазными проводами (380 В) Фазное напряжение (U ф) — это напряжение между нулевым проводом и одним из фазных (220 В)

Закон Ома: физический закон, определяющий связь между Электродвижущей силой источника или напряжением с силой тока и сопротивлением проводника. Экспериментально установлен в 1826 году, и назван в честь его первооткрывателя Георга Ома. Суть закона проста: порождаемый напряжением ток обратно пропорционален сопротивлению, которое ему приходится преодолевать, и прямо пропорционален порождающему напряжению. Формула закон Ома для участка цепи: I= U R

Диаграмма, помогающая запомнить закон Ома. Нужно закрыть искомую величину, и два других символа дадут формулу для её вычисления. Закон Ома

IP и IK Степень защиты IP , состоящая из двух букв и двух последующих цифр. Код IP указывает степень защиты от контакта с токопроводящими частями, проникновения посторонних твердых тел, а также жидкостей. Степень защиты IK состоит из двух букв и двух последующих цифр. Код IK указывает степень защиты от внешних механических ударов.

Степень IP 1. Защита от проникновения твердых тел размером более 50 мм (пример: случайный контакт с рукой) 2. Защита от проникновения твердых тел размером более 12 мм (пример: контакт с пальцами) 3. Защита от проникновения твердых тел размером более 2, 5 мм (пример: контакт с инструментами, проводами) 4. Защита от проникновения твердых тел размером более 1 мм (пример: контакт с небольшими инструментами, тонкими проводами) 5. Защита от проникновения пыли (безвредный налет) 6. Полная пыленепроницаемость0. Нет защиты

Степень IP 1. Защита от вертикально падающих капель воды (конденсация) 2. Защита от капель воды, падающих под вертикальным углом до 15 о 3. Защита от распыления воды под вертикальным углом до 60 о 4. Защита от распыления воды с любой стороны 5. Защита от струй воды, поступающих под небольшим давлением со всех сторон 6. Защита от мощных струй воды и волн 7. Защита от проникновения жидкости при временном погружении 8. Защита от проникновения жидкости при длительном погружении под давлением 0. Нет защиты

Степень IK 01 — Энергия удара 0, 150 Дж 02 — Энергия удара 0, 200 Дж 03 — Энергия удара 0, 350 Дж 04 — Энергия удара 0, 500 Дж 05 — Энергия удара 0, 700 Дж 06 — Энергия удара 1, 00 Дж 07 — Энергия удара 2, 00 Дж 08 — Энергия удара 5, 00 Дж 09 — Энергия удара 10, 00 Дж 10 — Энергия удара 20, 00 Дж

© 2024 fiboeda.ru -- Бизнес каждый день